
Cyclobutanes

DOI: 10.1002/ange.200602847

Controllable [2+2] Cycloadditions of 1,5-Bisallenyl-Substituted Compounds**

Xuefeng Jiang, Xin Cheng, and Shengming Ma*

Cyclobutanes^[1] are key structural units frequently found in biologically important compounds^[2] and may be easily formed from the [2+2] cycloaddition of two C=C bonds. The [2+2] cycloaddition reaction using an allene as one or both of the partners has attracted much attention^[3] because there is at least one extra carbon–carbon double bond ready for further elaboration. Reactions of allenenes **1** activated thermally^[4] and photochemically^[5] have been reported to afford distal adducts^[4] **2** and proximal adducts^[5] **3**, respectively, as a result of the regioselectivity of the reactions (Scheme 1). [2+2] Cycloadditions of allenynes **4** have been realized by heating^[4d] or from the catalytic action of transition-metal complexes.^[6] However, to the best of our knowledge, reports of [2+2] cycloaddition reactions between two allenes are limited.^[7,8] In this reaction the control of regioselectivity (head-to-head, tail-to-tail, head-to-tail) would be a formidable challenge^[3b] (Scheme 1). Herein we report

Scheme 1. Intramolecular [2+2] cycloadditions of allenenes, allenynes,

our recent observations of regiocontrollable [2+2] cycloadditions of 1,5-bisallenyl-substituted compounds.

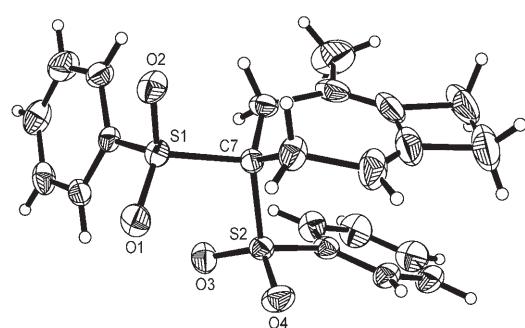
During our study of the cyclization of bisallenenes,^[9] we observed a facile regioselective [2+2] cycloaddition reaction of 1,5-bisallenyl compound **6**, which solely afforded the bicyclo[5.2.0] products **7** in moderate to good yields on heating in the absence of the *trans*-[RhCl(CO)(PPh₃)₂] complex, thereby differing from the formation of head-to-head products as reported by Skattebøl and Solomon.^[7a] This thermal [2+2] cycloaddition reaction of bisallenenes is very sensitive to the concentrations of the reagents in the reaction system. After screening the reaction conditions, we found that the best yields of bicyclo[5.2.0] products were obtained from reactions that were heated to reflux with a 0.04 M solution of the substrate in xylene. Bisallenenes substituted at the allene moiety gave better results, possibly because the diradical intermediates would be stabilized by these substituents.^[4a,b] Furthermore, it was observed that yields were much improved with a bulkier X group (Table 1). This result can be explained by the fact that a bulky X group may bring the two allene functionalities closer. The general structures of **7** were confirmed from the X-ray crystal structure of **7e** (Figure 1).^[10]

Conversely, unsaturated carbon–carbon bonds may undergo cyclometalation with many transition metals,^[11] such as Rh, Ru, Pd, Ir, Pt, Fe, Co, and Ni. As a result of the ring strain in four-membered cycles, the reductive elimination of metallacyclopentanes and metallacyclopentenes is the key step in affording the four-membered carbocyclic ring.^[7h,i] It is noteworthy that the reductive elimination of metallacyclopentanes and metallacyclopentenes has been observed in a limited number of catalytic reactions.^[12] After some screening of reaction conditions, we found that the reaction catalyzed by [Pd(PPh₃)₄]/K₂CO₃/nBu₄NI provides an exclusive pathway to the bicyclo[3.2.0] product **8a** from 1,5-bisallenyl compound **6a**. In the course of optimizing the Pd⁰-catalyzed [2+2] cycloaddition of bisallenenes, we noted the following: 1) no reaction was observed in the absence of K₂CO₃ and nBu₄NI (entry 1, Table 2); 2) on adding only four equivalents of K₂CO₃, the reaction afforded trace amounts of bicyclo[3.2.0] product **8a** as determined by ¹H NMR analysis of the crude reaction mixture (entry 2, Table 2); and 3) the reaction failed on using nBu₄NI alone (entry 3, Table 2). After much experimentation, we determined the optimal conditions (entry 4, Table 2). The I⁻¹ species in nBu₄NI may act as a ligand facilitating the reductive elimination process.^[13] The structure and stereochemistry of **8a** was confirmed by X-ray crystal-structure analysis (Figure 2).^[14]

With these optimized conditions in hand, the generality of the Pd⁰-catalyzed [2+2] cycloaddition of 1,5-bisallenyl compounds was explored (Table 3). However, compounds **6e–6k** with substituents on the proximal side did not give the expected bicyclo[3.2.0] products **8e–k** probably because of steric reasons. The formation of other regiosomers was not observed. Polymerization of the starting material may be partially responsible for the relatively low yields.

Furthermore, when X is the chiral L-valine ester, compound **8m** was formed in greater than 99% ee (Table 3), which indicates that the reaction proceeded without racemization of the α -amino acid ester. We attempted many

[*] X. Jiang, X. Cheng, Prof. Dr. S. Ma
State Key Laboratory of Organometallic Chemistry
Shanghai Institute of Organic Chemistry
Chinese Academy of Sciences
354 Fenglin Lu, Shanghai 200032 (P.R. China)
Fax: (+86) 21-6416-7510
E-mail: masm@mail.sioc.ac.cn


[**] Financial support from the National Natural Science Foundation of China (20121202, 20423001, and 20332060) and the Shanghai Municipal Committee of Science and Technology are greatly appreciated. We thank Z. Liang in our research group for reproducing the reactions of **6j** in Table 1 and **6c** in Table 3.

Supporting information for this article is available on the WWW under <http://www.angewandte.org> or from the author and bisallenenes.

Table 1: Thermal [2+2] cycloaddition of 1,5-bisallenyl compounds.^[a]

Bisallene	<i>t</i> [h]	Bicyclo[5.2.0]	Yield ^[b] [%]	Bisallene	<i>t</i> [h]	Bicyclo[5.2.0]	Yield ^[b] [%]
	24		43		10		56
	3		61		24		70
	46		38		6		69
	8		61		5		70
	1.5		69		0.5		78
	1		74				

[a] Reactions were carried out in xylene (0.04 M), heated to reflux. [b] Yield of isolated products. Ts = toluene-4-sulfonic acid.

Figure 1: ORTEP representation of **7e** with thermal ellipsoids at the 30% probability level.

reactions to determine the absolute structure of **8m**, and it was found that the methyl ester analogue of **8m** (that is, **8n**)

Table 2: Pd⁰-catalyzed [2+2] cycloaddition of 1,5-bisallenyl compounds under different conditions.

Entry	[Pd(PPh ₃) ₄] [mol %]	Base	Additive	Solvent	<i>t</i> [h]	Yield of 8a ^[a] [%]
1	10	— ^[b]	— ^[b]	toluene	8	n.r.
2	10	K ₂ CO ₃ (4 equiv)	— ^[b]	xylene	4	trace
3	10	— ^[b]	<i>n</i> Bu ₄ Ni (2 equiv)	xylene	10	n.r.
4	5	K ₂ CO ₃ (4 equiv)	<i>n</i> Bu ₄ Ni (2 equiv)	toluene	4	59

[a] Yield of isolated product. [b] Without additive. n.r. = no reaction.

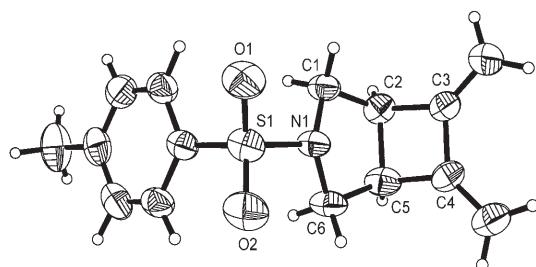
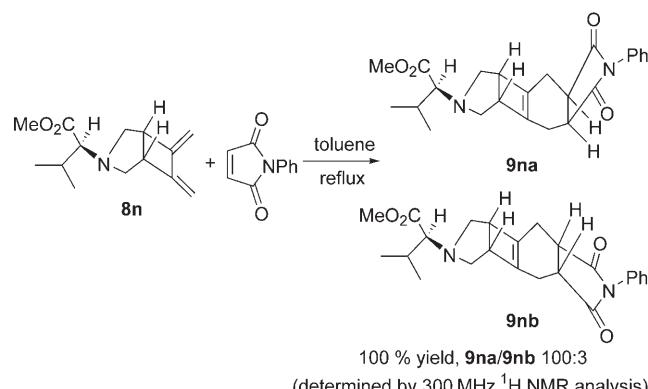


Figure 2. ORTEP representation of **8a** with thermal ellipsoids at the 30% probability level.

Table 3: Pd^0 -catalyzed [2+2] cycloaddition of 1,5-bisallenyl compounds.


Bisallene	<i>t</i> [h]	Bicyclo[3.2.0]	Yield ^[a] [%]
6a	4	8a	59
6b	4	8b	62
6c	19	8c	45
6i	8	8i	54
(<i>S</i>)- 6m	5 ^[b]	8m (>99% ee)	66

[a] Yield of isolated products. [b] 10 mol % of $[\text{Pd}(\text{PPh}_3)_4]$ was used.

could react with *N*-phenylmaleimide to afford a solid tetracyclic compound **9na** (Scheme 2). The X-ray crystal structure of **9na**^[15] led to the assignment of the absolute structures of **8m**, **8n**, and **9na** (Figure 3).

A plausible working model for the highly diastereoselective Pd^0 -catalyzed [2+2] cycloaddition of 1,5-bisallenyl compound (*S*)-**6m** is depicted in Scheme 3. The coordination between the Pd atom and the lone pair of electrons of the N atom in the intermediate **10**, along with the requirement of the Pd atom to be distant from the bulkier CO_2Et group, leads to the exclusive formation of **8m**. The inversion of the nitrogen center may be very difficult in this case because of the presence of the bicyclic skeleton.

In summary, we have realized two different [2+2] cycloaddition pathways of 1,5-bisallenyl compounds that result in the formation of two types of bicyclic products **7** and **8** with a single four-membered ring. As a result of the challenge often

Scheme 2. Diels–Alder reaction of **8n** with *N*-phenylmaleimide.

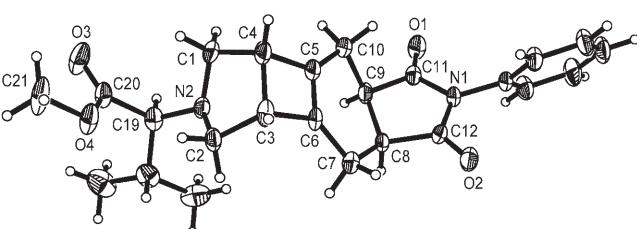
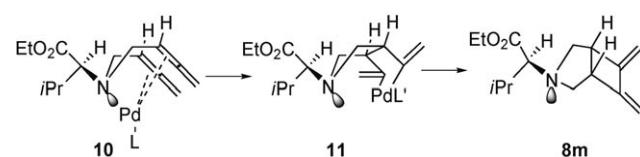



Figure 3. ORTEP representation of **9na** with thermal ellipsoids at the 30% probability level.

Scheme 3. Proposed working model for the highly diastereoselective formation of **8m**.

encountered in the synthesis of four-membered rings and their biological importance, these reactions may be powerful tools in organic synthesis and medicinal chemistry. Further studies, including the determination of the mechanism of thermal [2+2] cycloadditions of 1,5-bisallenyl compounds and the role of K_2CO_3 and $n\text{Bu}_4\text{NI}$ on the reductive elimination, are being pursued.

Experimental Section

General procedure I: A solution of bisallene **6a** (145 mg, 0.53 mmol) in dry xylene (12 mL) was heated at reflux under Ar for 24 h. After the reaction was complete by TLC (petroleum ether/ethyl acetate 5:1), rotary evaporation followed by flash chromatography on silica gel (petroleum ether/diethyl ether 20:1) afforded 62 mg (43 %) of the product **7a**: liquid; ^1H NMR (300 MHz, CDCl_3): δ = 7.68 (d, J = 8.1 Hz, 2H), 7.21 (d, J = 8.1 Hz, 2H), 5.22 (s, 2H), 4.12 (d, J = 2.7 Hz, 4H), 2.39 (s, 3H), 2.28 ppm (s, 4H); ^{13}C NMR (75.4 MHz, CDCl_3): δ = 143.2, 142.7, 137.9, 128.8, 127.7, 119.6, 50.7, 26.0, 21.4 ppm; MS (ESI): m/z (%) 274 ($[M-\text{H}]^+$, 100), 275 (M^+ , 45), 277 ($[M+\text{Na}-\text{H}]^+$, 40); IR (neat): ν = 2926, 1710, 1674, 1598, 1495, 1448, 1338, 1161 cm^{-1} ; HR-MS (ESI) calcd for $\text{C}_{15}\text{H}_{16}\text{NO}_2\text{S}$: $[M-\text{H}]^+$ 274.0896; found 274.0890.

General procedure II: K_2CO_3 (281 mg, 2.04 mmol, 4 equiv) and nBu_4NI (369 mg, 1 mmol, 2 equiv) were added to a stirred solution of bisallene **6a** (140 mg, 0.51 mmol) and $[Pd(PPh_3)_4]$ (27 mg, 0.023 mmol, 5 mol %) in dry toluene (5 mL). The reaction mixture was heated at 80–85°C for 4 h. After the reaction was complete by TLC (petroleum ether/ethyl acetate 5:1), rotary evaporation followed by flash chromatography on silica gel (petroleum ether/diethyl ether 20:1) afforded 82 mg (59 %) of the product **8a**: solid; m.p. 77–79°C (petroleum ether, ethyl acetate); 1H NMR (300 MHz, $CDCl_3$): δ = 7.68 (d, J = 8.1 Hz, 2H), 7.31 (d, J = 8.1 Hz, 2H), 5.21 (s, 2H), 4.79 (s, 2H), 3.62 (d, J = 9.9 Hz, 2H), 3.30 (d, J = 4.5 Hz, 2H), 2.72 (dd, J = 9.9, 4.5 Hz, 2H), 2.42 ppm (s, 3H); ^{13}C NMR (75.4 MHz, $CDCl_3$): δ = 149.0, 143.5, 132.1, 129.4, 128.0, 105.5, 53.3, 44.6, 21.5 ppm; MS (EI): m/z (%) 275 ([M^+], 4.41); 91 (100); IR (neat): 2923, 2851, 1459, 1344, 1167 cm^{-1} .

Diels–Alder reaction of [3.2.0]bicyclic compounds with *N*-phenylmaleimide: A solution of **8n** (13 mg, 0.055 mmol) and *N*-phenylmaleimide (19 mg, 0.11 mmol, 2 equiv) in dry toluene (2 mL) was heated at reflux under Ar for 8 h to afford 24 mg (100 %) of the product **9n** (**9na/9nb** 100:3, determined by 1H NMR analysis); $[\alpha]_D^{20}$ = −20.6 (c = 1.00 in $CHCl_3$): solid; m.p. 123–124°C (petroleum ether/ethyl ether); 1H NMR (300 MHz, $CDCl_3$): δ = 7.50–7.41 (m, 2H), 7.41–7.32 (m, 1H), 7.28 (d, J = 7.8 Hz, 2H), 3.67 (s, 3H), 3.30–3.22 (m, 2H), 3.22–3.10 (m, 2H), 2.95 (d, J = 10.5 Hz, 1H), 2.80–2.68 (m, 2H), 2.58–2.30 (m, 4H), 2.18–2.04 (m, 2H), 2.10–1.85 (m, 1H), 0.91 (d, J = 6.9 Hz, 3H), 0.87 ppm (d, J = 6.9 Hz, 3H); the following data are discernible for the minor isomer **9nb**: δ = 3.65 (s), 0.79 (d, J = 6.6 Hz), 0.76 ppm (d, J = 6.6 Hz); ^{13}C NMR (75.4 MHz, $CDCl_3$): δ = 178.88, 178.85, 172.5, 138.4, 132.0, 129.1, 128.4, 126.3, 70.0, 50.5, 50.3, 46.6, 46.0, 44.3, 37.8, 37.7, 28.0, 20.7, 20.5, 19.6, 19.2 ppm; MS (ESI): m/z (%) 409 ([M^+], 100), 441 ([M^+], 30); IR (neat): $\tilde{\nu}$ = 2924, 2854, 1714, 1500, 1457, 1379, 1171, 1150 cm^{-1} ; HR-MS (MALDI/2,5-dihydroxybenzoic acid matrix) calcd for $C_{24}H_{29}N_2O_4$ [M^+]: 409.2122; found: 409.2129.

Received: July 17, 2006

Revised: September 9, 2006

Published online: November 3, 2006

Keywords: bicyclic compounds · bisallenenes · cycloaddition · cyclobutanes · palladium

[1] a) J. E. Baldwin in *Comprehensive Organic Synthesis*, Vol. 5 (Eds.: B. M. Trost, I. Fleming), Pergamon, Oxford, **1991**, pp. 63–84; b) M. T. Crimmins in *Comprehensive Organic Synthesis*, Vol. 5 (Eds.: B. M. Trost, I. Fleming), Pergamon, Oxford, **1991**, pp. 123–150; c) Z. J. Rappoport, J. F. Lieberman, *The Chemistry of Cyclobutanes*, Wiley, **2005**; d) *Advances in Cycloaddition*, Vols. 1–6, JAI Press, Greenwich (CT), **1988–1999**; e) N. E. Schore, *Chem. Rev.* **1988**, 88, 1081; f) M. Lautens, W. Klute, W. Tam, *Chem. Rev.* **1996**, 96, 59.

[2] a) S. Beckman, H. Geiger in *Methoden der Organischen Chemie (Houben–Weyl)*, Vol. 4 (Ed.: E. Müller), Thieme, Stuttgart, **1971**, pp. 449–478; b) R. M. Ortuno, A. G. Moglioni, G. Y. Moltrasio, *Curr. Org. Chem.* **2005**, 9, 237.

[3] For reviews of the [2+2] cycloaddition of allenes, see: a) D. J. Pasto, *Tetrahedron* **1984**, 40, 2805; b) M. Murakami, T. Matsuda in *Modern Allene Chemistry*, Vol. 2 (Eds.: N. Krause, A. S. K. Hashmi), Wiley-VCH, Weinheim, **2004**, 727–815; c) S. Ma, *Chem. Rev.* **2005**, 105, 2829.

[4] a) A. Padwa, M. A. Filipkowski, M. Meske, S. H. Watterson, Z. Ni, *J. Am. Chem. Soc.* **1993**, 115, 3776; b) A. Padwa, M. Meske, S. S. Murphree, S. H. Watterson, Z. Ni, *J. Am. Chem. Soc.* **1995**, 117, 7071; c) B. Alcaide, P. Almendros, C. Aragoncillo, *Org. Lett.* **2003**, 5, 3795; d) H. Ohno, T. Mizutani, Y. Kadoh, K. Miyamura, T. Tanaka, *Angew. Chem.* **2005**, 117, 5243; *Angew. Chem. Int. Ed.* **2005**, 44, 5113.

[5] a) D. Becker, Z. Harel, D. Birnbaum, *J. Chem. Soc. Chem. Commun.* **1975**, 377; D. Becker, Z. Harel, M. Nagler, A. Gillon, *J. Org. Chem.* **1982**, 47, 3297; D. Becker, N. H. Y. Sahali, *Tetrahedron Lett.* **1989**, 30, 4429; b) W. G. Dauben, V. P. Rocco, G. Shapiro, *J. Org. Chem.* **1985**, 50, 3155; c) E. M. Carreira, C. A. Hastings, M. S. Shepard, L. A. Yerkey, *J. Am. Chem. Soc.* **1994**, 116, 6622; M. S. Shepard, E. M. Carreira, *J. Am. Chem. Soc.* **1997**, 119, 2597.

[6] a) Q. Shen, G. B. Hammond, *J. Am. Chem. Soc.* **2002**, 124, 6534; b) K. M. Brummond, D. Chen, *Org. Lett.* **2005**, 7, 3473; c) C. H. Oh, A. K. Gupta, D. I. Park, N. Kim, *Chem. Commun.* **2005**, 5670; for theoretical studies of these reactions, see: B. Engels, M. Hanrath, *J. Am. Chem. Soc.* **1998**, 120, 6356; P. G. Wentholt, M. A. Lipton, *J. Am. Chem. Soc.* **2000**, 122, 9265; P. W. Musch, B. Engels, *J. Am. Chem. Soc.* **2001**, 123, 5557.

[7] a) L. Skattebol, S. Solomon, *J. Am. Chem. Soc.* **1965**, 87, 4506; b) K. M. Nicholas, *J. Am. Chem. Soc.* **1975**, 97, 3255; c) P. J. Garratt, S. B. Neoh, *J. Org. Chem.* **1979**, 44, 2667; d) F. Toda, K. Tdnaka, I. Sano, T. Isozaki, *Angew. Chem.* **1994**, 106, 1856; *Angew. Chem. Int. Ed. Engl.* **1994**, 33, 1757; e) T. Shimizu, K. Sakamaki, N. Kamigata, *Tetrahedron Lett.* **1997**, 38, 8529; f) T. Shimizu, K. Sakamaki, D. Miyasaka, N. Kamigata, *J. Org. Chem.* **2000**, 65, 1721; g) S. Saito, K. Hirayama, C. Kabuto, Y. Yamamoto, *J. Am. Chem. Soc.* **2000**, 122, 10776; for the Pd-catalyzed formation of four-membered products from an intramolecular coupling reaction starting from bisallenenes and Bu_3SnH or Bu_3SnMBu_3 (M = Sn or Ge), see: h) S.-K. Kang, T.-G. Baik, A. N. Kulak, Y.-H. Ha, Y. Lim, J. Park, *J. Am. Chem. Soc.* **2000**, 122, 11529; i) Y.-T. Hong, S.-K. Yoon, S.-K. Kang, C.-M. Yu, *Eur. J. Org. Chem.* **2004**, 4628.

[8] For benzoannulation of 1,4-bisallenenes, see: P. Aubert, B. Prinet, J. Pernet, *Synth. Commun.* **1997**, 27, 2615; S. Kitagaki, Y. Okumura, C. Mukai, *Tetrahedron Lett.* **2006**, 47, 1849.

[9] S. Ma, P. Lu, L. Lu, H. Hou, J. Wei, Q. He, Z. Gu, X. Jiang, X. Jin, *Angew. Chem.* **2005**, 117, 5409; *Angew. Chem. Int. Ed.* **2005**, 44, 5275.

[10] Crystal data for compound **7e**: $C_{22}H_{22}O_4S_2$, M_r = 414.52, monoclinic, space group $P2(1)/c$, a = 13.4605(12), b = 9.1336(8), c = 16.4267(15) \AA , α = 90, β = 93.632(2), γ = 90°, V = 2015.5(3) \AA^3 , T = 293(2) K, Z = 4, final R indices [$I > 2\sigma(I)$], $R1$ = 0.0525, $wR2$ = 0.1323, R indices (all data), $R1$ = 0.0726, $wR2$ = 0.1402, , reflections collected/unique: 11518/4362 (R_{int} = 0.0572).

[11] a) J. Tsuji, *Transition Metal Reagents and Catalysts*, Wiley, Chichester, **2000**; b) *Handbook of Organopalladium Chemistry for Organic Synthesis* (Ed.: E. Negishi), Wiley-Interscience, **2002**; J. Tsuji, *Palladium Reagents and Catalysts*, Wiley, Chichester, **2004**; *Palladium in Organic Synthesis* (Ed.: J. Tsuji), Springer, **2005**; c) *Modern Rhodium-Catalyzed Organic Reactions* (Ed.: P. A. Evans), Wiley-VCH, Weinheim, **2005**; d) *Ruthenium in Organic Synthesis* (Ed.: S.-I. Murahashi), Wiley-VCH, Weinheim, **2004**; e) *Modern Organnickel Chemistry* (Ed.: Y. Tamaru), Wiley-VCH, Weinheim, **2004**; f) C. Aubert, O. Buisine, M. Malacria, *Chem. Rev.* **2002**, 102, 813; g) Ir: T. Shibata, T. Fujimoto, K. Yokota, K. Takagi, *J. Am. Chem. Soc.* **2004**, 126, 8382.

[12] a) M. Lautens, W. Klute, W. Tam, *Chem. Rev.* **1996**, 96, 49; N. E. Schore, *Chem. Rev.* **1988**, 88, 1081; b) S. Ohtsuka, K. Mori, F. Imaizumi, *J. Am. Chem. Soc.* **1965**, 85, 3017; c) S. Ohtsuka, K. Mori, T. Suminoe, F. Imaizumi, *Eur. Polym. J. Chem.* **1967**, 3, 73; d) S. Ohtsuka, A. Nakamura, K. Tani, S. Ueda, *Tetrahedron Lett.* **1969**, 10, 297; e) F. W. Hoover, R. V. Lindsey, Jr., *J. Org. Chem.* **1969**, 34, 3051; f) R. J. De Pasquale, *J. Organomet. Chem.* **1971**, 32, 381; g) S. Ohtsuka, K. Tani, T. Yamagata, *J. Chem. Soc. Dalton Trans.* **1973**, 2491; h) D. J. Pasto, N.-Z. Huang, C. W. Eigenbrot, *J. Am. Chem. Soc.* **1985**, 107, 3160; i) D. J. Pasto, N.-Z.

Huang, C. W. Eigenbrot, *Organometallics* **1985**, *4*, 1386; j) K. Takagi, I. Tomita, T. Endo, *Macromolecules* **1998**, *31*, 6741, and references therein; k) G. Ingrosso, M. Iqbal, R. Rossi, L. Porri, *Chim. Ind.* **1973**, *55*, 540; l) M. Iyoda, S. Tanaka, M. Nose, M. Oda, *J. Chem. Soc. Chem. Commun.* **1983**, 1058; M. Iyoda, S. Tanaka, H. Otani, M. Nose, M. Oda, *J. Am. Chem. Soc.* **1988**, *110*, 8494; M. Iyoda, Y. Kuwatani, M. Oda, *J. Am. Chem. Soc.* **1989**, *111*, 3761; m) K. C. Chao, D. K. Rayabarapu, C.-C. Wang, C.-H. Cheng, *J. Org. Chem.* **2001**, *66*, 8804.

[13] A. Togni, L. M. Venanzi, *Angew. Chem.* **1994**, *106*, 517; *Angew. Chem. Int. Ed. Engl.* **1994**, *33*, 497; .

[14] Crystal data for compound **8a**: $C_{15}H_{17}NO_2S$, $M_r=275.36$, monoclinic, space group $P2(1)/n$, $a=8.2755(12)$, $b=10.8834(17)$, $c=16.437(2)$ Å, $\alpha=90^\circ$, $\beta=101.394(3)$, $\gamma=90^\circ$, $V=1451.3(4)$ Å³, $T=293(2)$ K, $Z=4$, final R indices [$I>2\sigma(I)$], $R1=0.0455$, $wR2=0.0731$, R indices (all data), $R1=0.1847$, $wR2=0.0991$, reflections collected/unique: 8406/3162 ($R_{int}=0.0989$).

[15] Crystal data for compound **9na**: $C_{24}H_{28}N_2O_4$, $M_r=408.48$, monoclinic, space group $P2(1)$, $a=10.7399(18)$, $b=5.7808(9)$, $c=17.346(3)$ Å, $\alpha=90^\circ$, $\beta=97.128(3)$, $\gamma=90^\circ$, $V=1068.6(3)$ Å³, $T=293(2)$ K, $Z=2$, final R indices [$I>2\sigma(I)$], $R1=0.0543$, $wR2=0.1196$, R indices (all data), $R1=0.0675$, $wR2=0.1245$, reflections collected/unique: 6334/2563 ($R_{int}=0.1458$). CCDC-291779 (**7e**), CCDC-291780 (**8a**), CCDC-60887 (**9na**) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.